

iGAS Sensor Selection Table

To accurately measure a gas species, multiple sensors may be required to enable iGAS to correct for sensor cross sensitivity to other gas species.

Gas↓	Gas Name	Sensor→	NO	NO ₂	ОХ	SO ₂	СО	H ₂ S	NH ₃	CL ₂	ETO	PID	CO ₂
NO	Nitric Oxide	ppb	*										
NO ₂	Nitrogen Dioxide	ppb		*									
NO _x	Oxides of Nitrogen	ppb	*	*									
O ₃	Ozone	ppb		*	*								
SO ₂	Sulphur Dioxide	ppb		*	*	*	*						
СО	Carbon Monoxide	ppm					*						
H₂S	Hydrogen Sulphide	ppb				*	*	*					
NH ₃	Ammonia	ppm			*	*	*	*	*	*			
CL ₂	Chlorine	ppm		*	*		*	*		*			
HCHO EtO	Formaldehyde Ethylene Oxide	ppm	*	*	*	*	*	*			*		
VOC	10.6eV organics	ppb										*	
CO ₂	Carbon Dioxide	ppb											*

In the above table, the rows represent the gas to be measured, the columns the individual sensors required to measure that gas and correct for known interferences. For example, to measure SO₂, you would require SO₂, CO, OX, and NO₂ sensors. Note this table will be revised from time-to-time in the light of experience.

Note the interference correction sensors are only required if significant concentrations of the interfering species are likely to be present. For example, if you are measuring ppm of NH_3 , ppb concentrations of NO_2 are unlikely to be a problem.

Note that CO, NO₂ and OX sensors are always required if SO₂ or H₂S are being measured

© 2018 Turnkey, MJL, Issue 1, February 2018

www.igases.uk